In cycling, as in baseball and other sports, the contestants compete according to a set of rules.
The rules of cycling clearly prohibit the use of performance-enhancing drugs. But because the drugs are so effective and many of them are so difficult (if not impossible) to detect, and because the payoffs for success are so great, the incentive to use banned substances is powerful. Once a few elite riders “defect” from the rules (cheat) by doping to gain an advantage, their rule-abiding competitors must defect as well, leading to a cascade of defection through the ranks. Because of the penalties for breaking the rules, however, a code of silence prevents any open communication about how to reverse the trend and return to abiding by the rules. It was not ever thus. Many riders took stimulants and painkillers from the 1940s through the 1980s. But doping regulations were virtually nonexistent until Tom Simpson, a British rider, died while using amphetamines on the climb up Mont Ventoux in the 1967 Tour de France. Even after Simpson’s death, doping controls in the 1970s and 1980s were spotty at best. With no clear sense of what counted as following the rules, few perceived doping as cheating. In the 1990s, though, something happened to alter the game matrix. That “something” was genetically engineered recombinant erythropoietin: r-EPO. Ordinary EPO is a hormone that occurs naturally in the body. The kidneys release it into the bloodstream, which carries it to receptors in the bone marrow. When EPO molecules bind to those receptors, the marrow pumps out more red blood cells. Chronic kidney disease and chemotherapy can cause anemia, and so the development of the EPO substitute r-EPO in the late 1980s proved to be a boon to chronically anemic patients—and to chronically competitive athletes. Taking r-EPO is just as effective as getting a blood transfusion, but instead of hassling with bags of blood and long needles that must be poked into a vein, the athlete can store tiny ampoules of r-EPO on ice in a thermos bottle or hotel minifridge, then simply inject the hormone under the skin. The effect of r-EPO that matters most to the competitor is directly measurable: the hematocrit (HCT) level, or the percentage by volume of red blood cells in the blood. More red blood cells translate to more oxygen carried to the muscles. For men, the normal HCT percentage range is in the mid-40s. Trained endurance athletes can naturally sustain their HCT in the high 40s or low 50s. EPO can push those levels into the high 50s and even the 60s. The winner of the 1996 Tour de France, Bjarne Riis, was nicknamed Mr. 60 Percent; last year he confessed that he owed his extraordinary HCT level to r-EPO. The drug appears to have made its way into professional cycling in the early 1990s. Greg LeMond thinks it was 1991. Having won the Tour de France in 1986, 1989 and 1990, LeMond set his sights on breaking what would then have been a record of five Tour de France victories, and in the spring of 1991 he was poised to take his fourth.
“I was the fittest I had ever been, my split times in spring training rides were the fastest of my career, and I had assembled a great team around me,” LeMond told me.
“But something was different in the 1991 Tour. There were riders from previous years who couldn’t stay on my wheel who were now dropping me on even modest climbs.”
LeMond finished seventh in that Tour, vowing to himself that he could win clean the next year. It was not to be.
In 1992, he continued, “our [team’s] performance was abysmal, and I couldn’t even finish the race.” Nondoping cyclists were burning out trying to keep up with their doping competitors. LeMond recounted a story told to him by one of his teammates at the time, Philippe Casado. Casado learned from a rider named Laurent Jalabert, who was racing for the Spanish cycling team ONCE, that Jalabert’s personal doping program was entirely organized by the ONCE team. That program, LeMond said, included r-EPO, which LeMond refused to take, thereby consigning himself to another DNF (“did not finish”) in 1994, his final race. Some who did go along with the pressure to dope paid an even higher price. Casado, for instance, left LeMond’s team to join one that had a doping program—and died suddenly in 1995 at age 30. Whether his death resulted directly from doping is not known, but when HCT reaches around 60 percent and higher, the blood becomes so thick that clots readily form. The danger is particularly high when the heart rate slows during sleep—and the resting heart rates of endurance athletes are renowned for measuring in the low 30s (in beats per minute). Two champion Dutch riders died of heart attacks after experimenting with r-EPO. Some riders reportedly began sleeping with a heart-rate monitor hooked to an alarm that would sound when their pulse dropped too low. Just as in evolution there is an arms race between predators and prey, in sports there is an arms race between drug takers and drug testers. In my opinion, the testers are five years away from catching the takers—and always will be. Those who stand to benefit most from cheating will always be more creative than those enforcing the rules, unless the latter have equivalent incentives. In 1997, because there was no test for r-EPO (that would not come until 2001), the Union Cycliste International (UCI), the sport’s governing body, set an HCT limit for men of 50 percent. Shortly afterward, riders figured out that they could go higher than 50, then thin their blood at test time with a technique already allowed and routinely practiced: injections of saline water for rehydration. Presto change-o.Willy Voet, the soigneur, or all-around caretaker, for the Festina cycling team in the 1990s, explained how he beat the testers in his tell-all book, Breaking the Chain:
Just in case the UCI doctors arrived in the morning to check the riders’ hematocrit levels, I got everything ready to get them through the tests.... I went up to the cyclists’ rooms with sodium drips.... The whole transfusion would take twenty minutes, the saline diluting the blood and so reducing the hematocrit level by three units—just enough. This contraption took no more than two minutes to set up, which meant we could put it into action while the UCI doctors waited for the riders to come down from their rooms. How did the new rules of the doping game change the players’ strategies? I put the question directly to Joe Papp, a 32-year-old professional cyclist currently banned after testing positive for synthetic testosterone. Recalling the day he was handed the “secret black bag,” Papp explained how a moral choice becomes an economic decision:
“When you join a team with an organized doping program in place, you are simply given the drugs and a choice: take them to keep up or don’t take them and there is a good chance you will not have a career in cycling.”
No comments:
Post a Comment